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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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Insulator (the vacuum) at large U
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Excitations of the insulator:

S =
�

d2rdτ
�
|∂τψ|2 + v2|�∇ψ|2 + (g − gc)|ψ|2 +

u

2
|ψ|4

�
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oscillations of the 

condensate Dilute Boltzmann/Landau gas 
of particle and holes
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D. B. Haviland, Y. Liu, and A. M. Goldman, 
Phys. Rev. Lett. 62, 2180 (1989) 

Resistivity of Bi films

M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

Conductivity σ

σSuperconductor(T → 0) = ∞
σInsulator(T → 0) = 0

σQuantum critical point(T → 0) ≈ 4e2

h

Wednesday, April 28, 2010



Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “perfect fluid”
with shortest possible
relaxation time, τR

τR � �
kBT
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Quantum critical transport 
Transport co-oefficients not determined

by collision rate, but by
universal constants of nature

Electrical conductivity

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

σ =
4e2

h
× [Universal constant O(1) ]

Wednesday, April 28, 2010



Quantum critical transport 

P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett.  94, 11601 (2005)

, 8714 (1997).

Transport co-oefficients not determined
by collision rate, but by

universal constants of nature

Momentum transport
η

s
≡

viscosity
entropy density

=
�

kB
× [Universal constant O(1) ]
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σ =
4e2

h
Σ

Σ, a universal number.

Wednesday, April 28, 2010



σ =
4e2

h
Σ

�
�ω
kBT

�

�ω
kBT

K. Damle and S. Sachdev, 1997

1
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• Now add Dirac fermions, generalize the gauge
group to SU(N), and allow maximal super-
symmetry in 2+1 dimensions.

• Yields a model whose transport properties
can be computed exactly in the large N limit
via the AdS/CFT correspondence.

• Most importantly, the large N limit exhibits
hydrodynamic behavior, and the thermal equi-
libration time remains finite as N → ∞: this
is a first for any solvable many body theory.

• Critical conductivity Σ =
√
2N3/2/3 (“self-

dual” value).
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• For boson-vortex system, self-dual value is
Σ = 1, closed to the observed values. Self-
dual values are obtained for all models with
simple gravity duals, analogous to
η/s = �/(4πkB).
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P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) 

Imχ(k, ω)/k2 Im
K√

k2 − ω2

Collisionless to hydrodynamic crossover of SYM3

Collisionless
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P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) 

Imχ(k, ω)/k2

Im
Dχc

Dk2 − iω

Collisionless to hydrodynamic crossover of SYM3

Collision-dominated
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 Graphene

Conical Dirac dispersion
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 Quantum phase transition in graphene 
tuned by a gate voltage

Electron 
Fermi surface
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Hole
 Fermi surface

Electron 
Fermi surface

 Quantum phase transition in graphene 
tuned by a gate voltage
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Electron 
Fermi surface

Hole
 Fermi surface

There must be an 
intermediate 

quantum critical point 
where the Fermi 

surfaces reduce to a 
Dirac point

 Quantum phase transition in graphene 
tuned by a gate voltage
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 Quantum critical graphene

Low energy theory has 4 two-component Dirac fermions, ψσ,
σ = 1 . . . 4, interacting with a 1/r Coulomb interaction

S =
�

d2rdτψ†
σ

�
∂τ − ivF�σ · �∇

�
ψσ

+
e2

2

�
d2rd2r�dτψ†

σψσ(r)
1

|r − r�|ψ
†
σ�ψσ�(r�)
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 Quantum critical graphene

Low energy theory has 4 two-component Dirac fermions, ψσ,
σ = 1 . . . 4, interacting with a 1/r Coulomb interaction

S =
�

d2rdτψ†
σ

�
∂τ − ivF�σ · �∇

�
ψσ

+
e2

2

�
d2rd2r�dτψ†

σψσ(r)
1

|r − r�|ψ
†
σ�ψσ�(r�)

Dimensionless “fine-structure” constant α = e2/(�vF ).
RG flow of α:

dα

d�
= −α2 + . . .

Behavior is similar to a conformal field theory (CFT)
in 2+1 dimensions with α ∼ 1/ ln(scale)

Wednesday, April 28, 2010



-1 -0.5 0 0.5 1

100

200

300

400

500

600

-1 -0.5 0 0.5 1

100

200

300

400

500

600

∼ 1√
n
(1 + λ ln Λ√

n
)

n
1012/m2

T (K)

Dirac liquid

Electron
Fermi liquid

Hole
Fermi liquid

Quantum critical

 Quantum phase transition in graphene

Wednesday, April 28, 2010



Quantum critical transport in graphene

σ(ω) =






e2

h

�
π

2
+ O

�
1

ln(Λ/ω)

��
, �ω � kBT

e2

hα2(T )

�
0.760 + O

�
1

| ln(α(T ))|

��
, �ω � kBTα2(T )

η

s
=

�
kBα2(T )

× 0.130

where the “fine structure constant” is

α(T ) =
α

1 + (α/4) ln(Λ/T )
T→0
∼

4
ln(Λ/T )

L. Fritz, J. Schmalian, M. Müller and S. Sachdev, Physical Review B 78, 085416 (2008)        
M. Müller, J. Schmalian, and L. Fritz, Physical Review Letters 103, 025301 (2009) 
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S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007) 
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Previously unsolved: general quantum critical transport
theory for arbitrary µ, applied magnetic field B, and small
impurity density, and general ω/T .
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Dirac liquid
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Fermi liquid
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Fermi liquid

Quantum critical

⇒ maps onto quasinormal modes of a Reissner-Nordstorm
black hole in AdS4.

Previously unsolved: general quantum critical transport
theory for arbitrary µ, applied magnetic field B, and small
impurity density, and general ω/T .
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Magnetohydrodynamics of quantum criticality
We used the AdS/CFT connection to derive many new re-
lations between thermoelectric transport co-efficients in the
quantum critical regime.

As a simple example, in zero magnetic field, we can write
the electrical conductivity as

σ = σQ +
e∗2ρ2v2

ε + P
πδ(ω)

where σQ is the universal conductivity of the CFT, ρ is the
charge density, ε is the energy density and P is the pressure.

The same quantities also determine the thermal conductiv-
ity, κ:

κ = σQ

�
k2

BT

e∗2

� �
ε + P

kBTρ

�2

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007) 
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S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007) 

The same results were later obtained from the equations of
generalized relativistic magnetohydrodynamics, and from a
solution of the quantum Boltzmann equation.

So the results apply to experiments on graphene, the cuprates,
and to the dynamics of black holes.
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the electrical conductivity as

σ = σQ +
e∗2ρ2v2

ε + P
πδ(ω)

where σQ is the universal conductivity of the CFT, ρ is the
charge density, ε is the energy density and P is the pressure.

The same quantities also determine the thermal conductiv-
ity, κ:

κ = σQ

�
k2

BT

e∗2

� �
ε + P

kBTρ

�2

The same quantities also determine a “Wiedemann-Franz”-
like relation for thermal conductivity, κ at B = 0

κ = σQ

�
k2

BT

e∗2

� �
ε + P

kBTρ

�2

.

At B �= 0 and ρ = 0 we have a “Wiedemann-Franz” rela-
tion for “vortices”

κ =
1

σQ
k2

BT

�
v(ε + P )
kBTB

�2

.
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Magnetohydrodynamics of quantum criticality
We used the AdS/CFT connection to derive many new re-
lations between thermoelectric transport co-efficients in the
quantum critical regime.

As a simple example, in zero magnetic field, we can write
the electrical conductivity as

σ = σQ +
e∗2ρ2v2

ε + P
πδ(ω)

where σQ is the universal conductivity of the CFT, ρ is the
charge density, ε is the energy density and P is the pressure.

The same quantities also determine the thermal conductiv-
ity, κ:

κ = σQ

�
k2

BT

e∗2

� �
ε + P

kBTρ

�2

A second example: In an applied magnetic field B, the dy-
namic transport co-efficients exhibit a hydrodynamic cy-
clotron resonance at a frequency ωc

ωc =
e∗Bρv2

c(ε + P )

and damping constant γ

γ = σQ
B2v2

c2(ε + P )
.

The same constants determine the quasinormal frequency
of the Reissner-Nordstrom black hole.
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The cuprate superconductors
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Γ Γ

Central ingredients in cuprate phase diagram: 
antiferromagnetism, superconductivity, and 

change in Fermi surface

Strange
Metal
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Fermi surface+antiferromagnetism

Γ

Hole 
states 

occupied

Electron 
states 

occupied

Γ

The electron spin polarization obeys
�

�S(r, τ)
�

= �ϕ(r, τ)eiK·r

where K is the ordering wavevector.

+
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Start from the “spin-fermion” model

Z =
�
DcαD�ϕ exp (−S)

S =
�

dτ
�

k

c†kα

�
∂

∂τ
− εk

�
ckα

− λ

�
dτ

�

i

c†iα�ϕi · �σαβciβeiK·ri

+
�

dτd2r

�
1
2

(∇r �ϕ)2 +
�ζ
2

(∂τ �ϕ)2 +
s

2
�ϕ2 +

u

4
�ϕ4

�
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Increasing SDW order

ΓΓΓ

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Γ

Hole 
pockets

Electron 
pockets

Hole-doped cuprates
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arXiv:0912.3022

Fermi liquid behaviour in an 
underdoped high Tc 
superconductor

Suchitra E. Sebastian, N. Harrison, 
M. M. Altarawneh, Ruixing Liang, D. A. Bonn, 
W. N. Hardy, and G. G. Lonzarich

Evidence for small Fermi pockets
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Increasing SDW order

ΓΓΓ Γ

Hot spots

Theory of underdoped cuprates

Begin with SDW ordered state, and rotate to a frame
polarized along the local orientation of the SDW order �̂ϕ

�
c↑
c↓

�
= R

�
ψ+

ψ−

�
; R† �̂ϕ · �σR = σz ; R†R = 1

H. J. Schulz, Physical Review Letters 65, 2462 (1990)
B. I. Shraiman and E. D. Siggia, Physical Review Letters 61, 467 (1988).

J. R. Schrieffer, Journal of Superconductivity 17, 539 (2004)
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Theory of underdoped cuprates

With R =
�

z↑ −z∗↓
z↓ z∗↑

�
or �̂ϕ = z∗α�σαβzβ

the theory is invariant under

zα → eiθzα ; ψ+ → e−iθψ+ ; ψ− → eiθψ.−

We obtain a U(1) gauge theory of

• bosonic neutral spinons zα;

• spinless, charged fermions ψ±
with small ‘pocket’ Fermi surfaces;

• an emergent U(1) gauge field Aµ.

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Phys. Rev. B 80, 155129 (2009).
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CFT3

• Begin with a CFT3: the CP1 model.

γγc

Lz =
1

γ
|(∂µ − iAµ)zα|2 ; |zα|2 = 1

Higgs Coulomb
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Antiferromagnetic
order

�zα� �= 0

Spin liquid/
Valence bond solid

�zα� = 0

CFT3

• Begin with a CFT3: the CP1 model.

γγc

Lz =
1

γ
|(∂µ − iAµ)zα|2 ; |zα|2 = 1

Higgs Coulomb
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• Begin with a CFT3: the CP1 model.

• Add “probe” non-relativistic fermions,
g+ and g−, with opposite gauge charges

�k

ε

CFT3

g+

Lf = g†+

�
∂

∂τ
− iAτ − 1

2m

�
�∇− i �A

�2
�
g+

+ g†−

�
∂

∂τ
+ iAτ − 1

2m

�
�∇+ i �A

�2
�
g−
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• Begin with a CFT3: the CP1 model.

• Add “probe” non-relativistic fermions,
g+ and g−, with opposite gauge charges

�k

ε

CFT3

g+

• Turn on fermion chemical potential:
leads to a marginal Fermi liquid

µ

Lf = g†+

�
∂

∂τ
− iAτ − µ− 1

2m

�
�∇− i �A

�2
�
g+

+ g†−

�
∂

∂τ
+ iAτ − µ− 1

2m

�
�∇+ i �A

�2
�
g−
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Lf = g†+

�
∂

∂τ
− iAτ − µ− 1

2m

�
�∇− i �A

�2
�
g+

+ g†−

�
∂

∂τ
+ iAτ − µ− 1

2m

�
�∇+ i �A

�2
�
g−

Complete theory

Lz =
1

γ
|(∂µ − iAµ)zα|2 ; |zα|2 = 1

L = Lz + Lf

V. Galitski and S. Sachdev, Phys. Rev. B 79, 134512 (2009).
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Theory has many similarities to holographic superconductors

(Gubser, Hartnoll, Herzog, Horowitz) solved via the AdS/CFT

correspondence, which (presumably) describe SYM3 theories in

which gluinos pair via exchange of gluons into color singlets,

and then Bose condense:

• Fermi surfaces with non-Fermi singularities in spectral

functions

• Cooper pairs which are gauge neutral

• Are obtained after doping a CFT3 with finite density of

a conserved global charge

• Fermion and current spectral functions in superconduct-

ing and normal states have many similarities to cuprates
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• Begin with a CFT3: the CP1 model.

• Add “probe” non-relativistic fermions,
g+ and g−, with opposite gauge charges

�k

ε

CFT3

g+

µ

• Turn on fermion chemical potential:
leads to a marginal Fermi liquid of g± (not electrons)

Lf = g†+

�
∂

∂τ
− iAτ − µ− 1

2m

�
�∇− i �A

�2
�
g+

+ g†−

�
∂

∂τ
+ iAτ − µ− 1

2m

�
�∇+ i �A

�2
�
g−
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• Begin with a CFT3: the CP1 model.

• Add “probe” non-relativistic fermions,
g+ and g−, with opposite gauge charges

�k

ε

CFT3

g+

µ

G(�k, ω) =
1

ω − vF (|�k| − kF ) + c ω[ln(|ω|) + iπsgn(ω)]

g±

• Turn on fermion chemical potential:
leads to a marginal Fermi liquid of g± (not electrons)
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• Turn on fermion chemical potential:
leads to a marginal Fermi liquid of g± (not electrons)

• Begin with a CFT3: the CP1 model.

• Add “probe” non-relativistic fermions,
g+ and g−, with opposite gauge charges

�k

ε

g+

CFT3

g−

• Low T state is a superconductor
with �g+g−� = ∆ �= 0

∆
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Increasing SDW order

Γ

Focus on pairing near (π, 0), (0, π), where ψ± ≡ g±,
and the electron operators are

�
c1↑
c1↓

�
= Rz

�
g+

g−

�
;

�
c2↑
c2↓

�
= Rz

�
g+

−g−

�

Rz ≡
�

z↑ −z∗↓
z↓ z∗↑

�
.

Electron c1α,
spinless fermion g±

Electron c2α,
spinless fermion g±

Why is the pairing d-wave ?
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Fluctuating pocket theory for
electrons near (0, π) and (π, 0)

Attractive gauge forces lead to simple s-wave pairing of the g±

�g+g−� = ∆

For the physical electron operators, this pairing implies

�c1↑c1↓� = ∆
�
|zα|2

�

�c2↑c2↓� = −∆
�
|zα|2

�

i.e. d-wave pairing !

Why is the pairing d-wave ?

R. K. Kaul, M. Metlitksi, S. Sachdev,  and Cenke Xu, Phys. Rev. B 78, 045110 (2008).
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Antiferromagnetic
order

�zα� �= 0

Spin liquid/
Valence bond solid

�zα� = 0

CFT3 γγc

Lz =
1

γ
|(∂µ − iAµ)zα|2 ; |zα|2 = 1

T=0 Phase diagram

Higgs Coulomb
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Antiferromagnetic
order

�zα� �= 0

Spin liquid/
Valence bond solid

�zα� = 0

CFT3 γγc

Lz =
1

γ
|(∂µ − iAµ)zα|2 ; |zα|2 = 1

T=0 Phase diagram

Lf = g†+

�
∂

∂τ
− iAτ − µ− 1

2m

�
�∇− i �A

�2
�
g+

+ g†−

�
∂

∂τ
+ iAτ − µ− 1

2m

�
�∇+ i �A

�2
�
g−

d-wave superconductivity

E. G. Moon and S. Sachdev, Phy. Rev. B 80, 035117 (2009)
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Antiferromagnetic
order

�zα� �= 0

Spin liquid/
Valence bond solid

�zα� = 0

CFT3 γγc

T=0 Phase diagram

d-wave superconductivity

Competition between antiferromagnetism and 
superconductivity shrinks region of 

antiferromagnetic order: feedback of 
“probe fermions” on CFT is important

E. G. Moon and S. Sachdev, Phy. Rev. B 80, 035117 (2009)
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Small Fermi
pockets with 

pairing fluctuations
Large
Fermi

surface

Strange
Metal

Magnetic
quantum
criticality

Spin density wave (SDW)

Spin gap

Thermally
fluctuating

SDW

d-wave
superconductor

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivity
moves the actual quantum critical point to x = xs < xm.

Fluctuating, 
paired Fermi

pockets

T*

V. Galitski and
S. Sachdev, Phys.
Rev. B 79, 134512
(2009).

E. G. Moon and
S. Sachdev, Phys.
Rev. B 80, 035117
(2009)
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Small Fermi
pockets with 

pairing fluctuations
Large
Fermi

surface

Strange
Metal

Magnetic
quantum
criticality

Spin density wave (SDW)

Spin gap

Thermally
fluctuating

SDW

d-wave
superconductor

V. Galitski and
S. Sachdev, Phys.
Rev. B 79, 134512
(2009).

E. G. Moon and
S. Sachdev, Phys.
Rev. B 80, 035117
(2009)

Theory of quantum criticality in the cuprates

Fluctuating, 
paired Fermi

pockets

Physics of competition: d-wave SC and SDW
“eat up” same pieces of the large Fermi surface.

T*
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H

SC

M
"Normal"

(Large Fermi
surface)

SDW
(Small Fermi

pockets)

SC+
SDW

Small Fermi
pockets with 

pairing fluctuations
Large
Fermi

surface

Strange
Metal

d-wave
SC

T

Tsdw

Fluctuating, 
paired Fermi

pockets

T*

E. Demler, S. Sachdev
and Y. Zhang, Phys.
Rev. Lett. 87,
067202 (2001).

E. G. Moon and
S. Sachdev, Phy.
Rev. B 80, 035117
(2009)
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G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223

Similar phase diagram for CeRhIn5
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Similar phase diagram for the pnictides

Ishida, Nakai, and Hosono
arXiv:0906.2045v1
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S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, 
A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, 
R. J. McQueeney, A. I. Goldman, arXiv:0911.3136.
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General theory of finite temperature 
dynamics and transport near 
quantum critical points, with 

applications to antiferromagnets, 
graphene, and superconductors

     

Conclusions
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The AdS/CFT offers promise in 
providing a new understanding of 

strongly interacting quantum matter 
at non-zero density

     

Conclusions
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Conclusions

Gauge theory for pairing of Fermi pockets in a 
metal with fluctuating spin density wave order: 

Many qualitative similarities to holographic 
strange metals and superconductors
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